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ABSTRACT: X-linked parkinsonism encompasses rare
heterogeneous disorders mainly inherited as a recessive
trait, therefore being more prevalent in males. Recent
developments have revealed a complex underlying pano-
rama, including a spectrum of disorders in which parkin-
sonism is variably associated with additional neurological
and non-neurological signs. In particular, a childhood-
onset encephalopathy with epilepsy and/or cognitive dis-
ability is the most common feature. Their genetic basis is
also heterogeneous, with many causative genes and dif-
ferent mutation types ranging from “classical” coding
variants to intronic repeat expansions. In this review, we
provide an updated overview of the phenotypic and
genetic spectrum of the most relevant X-linked parkinso-
nian syndromes, namely X-linked dystonia-parkinsonism
(XDP, Lubag disease), fragile X-associated tremor/ataxia
syndrome (FXTAS), beta-propeller protein-associated
neurodegeneration (BPAN, NBIA/PARK-WDR45), Fabry
disease, Waisman syndrome, methyl CpG-binding pro-
tein 2 (MeCP2) spectrum disorder, phosphoglycerate
kinase-1 deficiency syndrome (PGK1) and X-linked

parkinsonism and spasticity (XPDS). All clinical and
radiological features reported in the literature have been
reviewed. Epilepsy occasionally represents the symptom
of onset, predating parkinsonism even by a few years;
action tremor is another common feature along with
akinetic-rigid parkinsonism. A focus on the genetic back-
ground and its pathophysiological implications is pro-
vided. The pathogenesis of these disorders ranges from
well-defined metabolic alterations (PGK1) to non-specific
lysosomal dysfunctions (XPDS) and vesicular trafficking
alterations (Waisman syndrome). However, in other cases
it still remains poorly defined. Recognition of the pheno-
typic and genetic heterogeneity of X-linked parkinsonism
has important implications for diagnosis, management,
and genetic counseling. © 2021 The Authors. Movement
Disorders published by Wiley Periodicals LLC on behalf
of International Parkinson and Movement Disorder
Society
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Since the identification of the first mutation in the
SNCA gene causing Parkinson’s disease (PD) in 1997,
many other genes have been associated with PD. They
range from common susceptibility loci with moderate
to weak effect sizes to highly penetrant rare disease loci,

where the presence of mutations is sufficient to cause
the disease with mendelian inheritance.1 To date,
monogenic forms account for only �5% to 10% of
patients with PD, usually characterized by an earlier
disease onset.
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Yet, a parkinsonian phenotype is also a prominent fea-
ture in several syndromic conditions, whose genetic cau-
ses have been largely uncovered in recent years because
of next generation sequencing efforts. Although many
syndromic conditions follow an autosomal recessive pat-
tern of inheritance, a growing number of disorders are
being associated with pathogenic variants affecting genes
that lie on the X chromosome. Following the classical
rules of Mendelian genetics, X-linked disorders have
long been considered to follow either a dominant or
recessive inheritance. In X-linked dominant disorders,
affected individuals are mainly heterozygous females,
with hemizygous males showing a much more severe or
even non-viable phenotype; conversely, in X-linked
recessive disorders, hemizygous males are affected,
whereas heterozygous females are either healthy carriers
or show highly attenuated phenotypes. Yet, these classi-
cal Mendelian concepts have been challenged by recent
observations, showing a much more complex scenario,
with several X-linked disorders showing intermediate
penetrance and variable expressivity in both males and
females.2 Mechanisms such as cell autonomous expres-
sion, skewed X-inactivation, clonal expansion, and
somatic mosaicism play an important role in determining
the clinical phenotype, making the standard definitions
of X-linked recessive and dominant inheritance inade-
quate. Therefore, all such disorders should be simply
described as following “X-linked” inheritance.
Here, we will review all known X-linked diseases in

which parkinsonism is a relevant feature. These condi-
tions represent a good model to highlight the phenotypic
heterogeneity of parkinsonian syndromes and associated
movement disorders. Furthermore, they also represent
interesting examples of the genetic background and
mechanisms of disease, ranging from point mutations in
coding sequences to hexanucleotide intronic expansions.
Finally, they provide useful insight into pathophysiologic
mechanisms, which are advocated in the pathogenesis of
idiopathic neurodegenerative diseases.
Table 1 provides a summary of the main characteris-

tics of the syndromes described, and Table 2 illustrates
the diagnostic red flags. Figure 1 shows the localization
of the disease loci on the X chromosome and recapitu-
lates the underlying pathophysiological mechanisms.
Figure 2 is a schematic representation of X-linked par-
kinsonism’s gene products functions and localizations.

X-Linked Dystonia-Parkinsonism:
Intronic Repeat Expansion Disease

Prevalent in Males
Epidemiology

X-linked dystonia parkinsonism (XDP, OMIM
314250), also known as Lubag disease/DYT3, is an

inherited neurodegenerative condition characterized by a
progressive parkinsonism along with dystonic features.
It was firstly described as endemic in the Panay Island

in the Philippines, particularly in the region of Capiz.3

Its estimated prevalence in the Panay Island is
4.77/100,000, dropping to 0.36/100,000 considering
the whole country.4 Most reported cases are males, but
some female patients have also been reported, usually
with later onset and milder forms of the disease (male:
female ratio = 99:1). Cases of affected Filipinos have
been reported also in other countries.5

Clinical Features
Age of onset ranges from 12 to 75 years, being more

common in the 4th decade for males and in the 5th for
females.6 The onset symptom is usually a focal dystonia,
which can then progress to a segmental or generalized
form, becoming the most prominent clinical feature.
Dystonia often starts in the jaw then spreads to the neck,
usually retrocollis. Other forms of craniocervical and
upper limb dystonia may develop, but are rarely seen at
onset.7 Parkinsonism is usually characterized by asym-
metric bradykinesia, tremor, rigidity, and peculiar gait
disturbances.8-10 Ocular movement abnormalities have
also been described.11 Other movement disorders have
been reported, such as chorea, mainly involving the dis-
tal upper limbs, and action myoclonus of cortical origin.
From the neuropsychological point of view, depression is
a common feature,12 and impulse control disorders
(ICD) have been also reported.13 Frontal executive dys-
function may be seen in some patients, but cognitive
deterioration is unusual.14,15 Females’ phenotype is usu-
ally milder, with prominent parkinsonism.6,16

Neuroimaging
Striatal atrophy is the most common finding in neuro-

imaging studies of XDP patients. Recent studies have
shown a strong involvement of regions with striatal
connectivity.17,18 Iron deposition in the putamen has
also been reported.19 On functional neuroimaging,
there is evidence for both pre- and post-synaptic
nigrostriatal degeneration in the majority of XDP
patients.20 Interestingly, the degree of post-synaptic
degeneration correlated with disease duration.18

Treatment
A better prognosis has been reported in those showing

more prominent parkinsonian features over dystonia.9

Parkinsonian features may show a good response to levo-
dopa (L-dopa) and, peculiarly, XDP patients do not
develop levodopa-induced dyskinesias (LIDs).5 Focal dys-
tonia can be successfully treated with botulinum toxin
injections. Anticholinergics may be useful in the early
stages, along with clonazepam. The predominantly phasic
type of generalized dystonic movements may respond
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dramatically to zolpidem or tetrabenazine.5 Bilateral deep
brain stimulation (DBS) of the internal globus pallidus
(GPi) has been reported as effective on both dystonic and
parkinsonian features in some male patients.21-24

Neuropathology
Striatal synaptic loss and patchy gliosis, involving

more the caudate than the putamen, have been
described. Both the internal and external globus
pallidus (GP) were affected.5,25 More specifically, Goto
et al26 found a neostriatal defect of the neuropeptide Y
system, which is implicated in modulation of neuro-
genesis and neurotransmitter release.

Genetic Background and Pathophysiology
The identification of the genetic background of XDP has

been truly challenging. Although it was soon established
that all symptomatic individuals shared the same haplotype
across the DYT3 locus, subsequent sequencing analysis of
the only gene contained within the locus (TAF1) has long
proven unsuccessful, resulting only in a handful of variants
of doubtful pathogenicity.28 Only recently, because of a
combined approach of short- and long-read genomic
sequencing and transcriptome sequencing in induced
pluripotent stem cells (iPSCs)-derived neuronal cells
from XDP patients, the molecular culprit was found to be
a polymorphic variation of a hexanucleotide repeat
(CCCTCT) within a SINE-VNTR-Alu (SVA) ret-
rotransposon inserted within an intron of the TAF1 gene.27

The expansion varies from 35 to 52 repeats, whose length
was shown to influence the ability of the SVA to regulate
transcription and correlated inversely with age at
disease onset.28 This observation has been replicated by
Westenberger et al29 who also speculated that the hexamer
length could influence the phenotype, with prominent dys-
tonic versus parkinsonian features, and the severity of the
disease. However, the pathogenesis of the disease remains
unclear. TAF1 encodes the TATA-binding protein
(TBP)-associated factor-1 (TAF1), a core subunit of the
transcription factor II D (TFIID) complex, which is part of
the general transcriptional machinery. It seems that the
hexanucleotide expansion causes a reduction of TAF1
expression, but there are conflicting data on which of its
many tissue-specific transcripts are more affected.27,30

Fragile-X Associated Tremor Ataxia
Syndrome: Premutation of a Repeat

Expansion Disease with
Manifestations in both Sexes

Epidemiology
Fragile-X-associated tremor ataxia syndrome (FXTAS,

OMIM 300623) is a late onset neurodegenerative disorder
affecting carriers of the cytosine guanine guanine (CGG)
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repeat expansion in the fragile X mental retardation
1 (FMR1) gene within the premutation range (55–200
repeats).31 FMR1 premutation is also associated with other
clinical entities, such as fragile X-associated primary ovar-
ian insufficiency (FXPOI) and fragile X-associated neuro-
psychiatric disorders (FXAND), including attention deficit
hyperactivity disorder (ADHD), autism spectrum disorders
(ASD), depression, and anxiety.32,33 The prevalence of this
premutation in the general population has been estimated
to be approximately 1:150–300 females and 1:400–850
males, with some geographical differences.31

Clinical Presentation
Onset of FXTAS usually occurs in the 6th to 7th

decade, but cases with earlier onset have been

described.34 Parkinsonian features has been detected in
approximately 29% to 60% of FXTAS patients, with
bradykinesia reported in almost 50% and rest tremor
in 30% to 40%, usually in later stages and in combina-
tion with a postural or intentional component.35 Even
if overt parkinsonism is usually diagnosed in the sev-
enth decade, a study on young asymptomatic subjects
carrying the CGG expansion premutation demonstrated
subclinical but significant motor impairment, with lon-
ger manual movement and reaction times.36 Sometimes
the clinical picture resembles that of idiopathic PD,
mostly when the repeat expansion is in the lower pre-
mutation range on in the so-called “gray zone” (40–55
CGG repeats), and especially in females.37-43 However,
isolated parkinsonism is rare, and the clinical picture is
usually more complex, with associated cerebellar
features, autonomic dysfunction, peripheral neuropa-
thy, depression, thyroid problems, and cognitive
issues.31,44,45 Ataxia is almost invariably present in
males with FXTAS, whereas it is rarer in female
subjects. It is progressive with high risk of falling within
�4 years from onset.46 Intention tremor is seen in 64%
to 88% of patients.44,47 Eye movement abnormalities
have been described, including impaired optokinetic
nystagmus in the vertical direction, slowing of vertical
saccades, saccadic pursuits, and square wave jerks.
Cognitive dysfunction is common in later stages. A sub-
cortical frontal executive impairment is the most com-
mon pattern along with verbal dysfluency.44,48

Neuropathy can precede the motor disturbances, and
patients usually show diminished distal reflexes and
reduced vibratory sensation of which they are rarely
aware of.46 Vestibular dysfunction is also an early fea-
ture, with patients complaining of dizziness and ver-
tigo.31,44 On the other hand, hearing and olfactory
deficits have been described in later stages.31 Erectile
dysfunction is by far the most common autonomic
symptom, present in more than half patients, but blad-
der symptoms and orthostatic hypotension are also
reported.31,35 REM sleep behavior disorders and rest-
less leg syndrome are more frequent than in the general
population, being found in �16% of patients.44

Neuroimaging
The hallmark radiological sign of FXTAS is an

increased signal on a T2 flair magnetic resonance imag-
ing (MRI) sequence in cerebral white matter especially
on the middle cerebellar peduncles, the so-called “MCP
sign”.49,50 It is highly specific but it is seen in only 50%
to 60% of male patients and is rarely seen in women.
Moderate to severe cortical atrophy with increased ven-
tricular volumes is seen in both genders, as well as ver-
mian atrophy.51,52

Dopaminergic transporter single-photon emission
computerized tomography (SPECT) imaging studies

TABLE 2. Diagnostic red flags for each disease

Syndrome Diagnostic red flags

XDP • Combination with dystonia
• Philipino ethnicity
• Male sex
• Young onset

FXTAS • Combination with ataxia and/or action
tremor

• Family or personal history of premature
ovarian failure, cognitive impairment, and
neuropsychological disorders

• MCP sign at brain MRI
BPAN • Childhood onset of epilepsy and or

behavioral issues
• Developmental delay
• Female sex
• Early adulthood onset

Fabry disease • Family or personal history of proteinuria,
acroparesthesia, cardiovascular and
cerebrovascular disease, renal disease,
and corneal opacity

Waisman syndrome • Calcification/iron deposition in SN, GP at
brain MRI

• Male sex
• Combination with ID

MeCP2 spectrum
disorder

• Combination with ASD, ID, psychiatric
features

• Male sex
• Juvenile onset

Phosphoglycerate
kinase-1 deficiency

• Combination with stroke- like episodes
epilepsy, hemolytic anemia, myopathy,
and ID

• Young onset
• Early LIDs and psychosis

XPDS • Combination with spasticity, ID, and
epilepsy

• Male sex

Abbreviations: XDP, X-linked dystonia-parkinsonism; FXTAS, fragile-X asso-
ciated tremor ataxia syndrome; BPAN, beta-propeller protein associated
neurodegeneration; XPDS, X-linked parkinsonism with spasticity; LID, levo-
dopa induced dyskinesias; ID, intellectual disability; ASD, autism spectrum
disorders; SN, substantia nigra; GP, globus pallidus.
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usually show evidence of nigrostriatal degeneration in
FXTAS cases with parkinsonism.53 In one case, also a
post-synaptic dopaminergic deficit was demonstrated.54

However, few cases with normal findings at SPECT
with (123)I]FP-CIT have also been described.55

Treatment
Parkinsonism is usually slowly progressive and has a

good response to dopamine-replacement therapy,
whereas ataxia and intention tremor have a worse
impact on patients’ quality of life. Primidone or beta
blockers can be used for the tremor and selective
serotonin-receptor blockers (SSRIs) for irritability or
depression. Ventro-intemerdiate thalamic nucleus (Vim)
DBS usually provides mild improvement in the tremor
but frequent side effects on gait and postural stability
are reported.44 Interestingly, environmental toxins, such
as drugs, general anesthesia, or chemotherapy, can
exacerbate the symptoms of FXTAS.50,56,57

Neuropathology
Pathological findings from a cohort of 40 subjects

with FXTAS showed synuclein and Lewy bodies
(LB) pathology in 10% of the cases, of whom two had
been diagnosed with PD earlier in life.37 Furthermore, a
presynaptic dopaminergic loss was demonstrated in all
cases diagnosed with parkinsonism. Furthermore, high

FIG. 2. Schematic representation of X-linked parkinsonism’s gene prod-
ucts functions and localizations: MeCP2 (MeCP2 spectrum disorders)
encodes a chromatin-associated protein, TAF1 (XDP) is part of the tran-
scriptional machinery, FMRP (FXTAS) is a mRNA binding protein,
WDR45 (BPAN) regulates the assembly of multiprotein complexes,
RAB39 (Waisman syndrome) is responsible for intracellular vesicular
trafficking, PGK1 (PGK1 deficiency syndrome) is a glycolysis enzyme
and ATP6AP2 (XPDS) and GLA (Fabry’s disease) are lysosomal
enzymes. L, lysosome; V, vesicle; ER, endoplasmic reticulum; N,
nucleus. (Created with BioRender.com). [Color figure can be viewed at
wileyonlinelibrary.com]

FIG. 1. Genes localization ox the X chromosome and insights on gene functions and related disease pathophysiology. [Color figure can be viewed at
wileyonlinelibrary.com]
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levels of extracellular or intracellular iron deposits within
capillaries and parenchyma of the striatum and, to a lesser
extent, the cerebellum have been reported.58,59 This
evidence suggests that the CGG expansion premutation
predispose to neurodegeneration through autophagy and
protein scavenging impairment.

Genetic Background and Pathophysiology
FMR1 premutation disorders are associated with a

gain-of-function mechanism, resulting in an increase up
to eightfold in mRNA production, which is believed to
exert deleterious effects in several ways.60,61 First, the
sequestration of proteins and RNAs into inclusion bod-
ies leads to impaired cell function because of loss of
these RNA and protein species. Furthermore, excess
mRNA leads to DNA damage through R-loop forma-
tion, a three-stranded nucleic acid structure, composed
of a DNA:RNA hybrid and the associated non-template
single-stranded DNA. Finally, regions of mRNA con-
taining the triplet repeat are prone to errors in transla-
tion. They interfere with protein synthesis, which can
be initiated outside of the traditional AUG start codon,
leading to the production of toxic FMR polyG protein.
This mechanism is called repeat-associated non-ATG
(RAN) translation and is a common feature in triplet
repeat expansion disorders.60 However, whether RAN
translation is a central driver of pathogenesis remains
unclear. Indeed, Ma et al62 detected RAN translation
products in human FXTAS brain tissue, but in very low
abundance and outside FXTAS inclusion bodies.
Another pathophysiological hypothesis sees the

mitochondrial dysfunction consequent to elevated
mRNA and Ca+2 levels responsible for neu-
rodegeneration in FXTAS.63 Mitochondrial dysfunc-
tion might facilitate the development of conditions
such as parkinsonism and extracellular deposition of
iron in the striatum.64-66

Beta-Propeller Protein-Associated
Neurodegeneration: X-Linked
Disorder Prevalent in Females

Epidemiology
Beta-propeller protein-associated neurodegeneration

(BPAN, OMIM 300894), previously called static
encephalopathy of childhood with neurodegeneration
in adulthood (SENDA) and also known as neu-
rodegeneration with brain iron accumulation 5
(NBIA5), is a rare neurological disorder characterized
by early onset seizures, developmental delay, and
behavioral issues followed by a later onset progressive
dystonia-parkinsonism (mean age 25 years, range
15–37 years). Its prevalence is not known, but it is a
rare disorder with <100 cases described. The majority

of patients are female, although few male cases have
been reported (F:M ratio ffi 6:1).67,68

Clinical Presentation
BPAN is characterized by a two-stage disease

course.69 Although symptom onset is in childhood,
the mean age at diagnosis is in early adulthood.70

The first phase of the disease, in childhood, is charac-
terized by developmental delay of variable degree,
followed by intellectual disability with predominant
verbal impairment but also poor coordination, both
in fine and gross motor skills.71 Epilepsy with sei-
zures triggered by fever is also common. It is often
initially drug-resistant but tends to become less diffi-
cult to treat or even to completely resolve after
puberty.72 Abnormal behaviors similar to those seen
in Rett syndrome are also described.72-74 Other fea-
tures include abnormal sleep patterns and ophthal-
mological findings, such as bilateral partial retinal
colobomas, myopia, spontaneous retinal detachment,
and bilateral optic atrophy.72 During adolescence or
early adulthood, patients experience a neurologic
deterioration with movement disorders and cognitive
decline.67,75 Subjects usually show a rigid–akinetic
parkinsonism with gait and postural impairment
along with upper limb dystonia.72 The severity of the
clinical manifestations can vary. Factors such as a
skewed X-inactivation in females, a somatic mosai-
cism or the variable pathogenic impact of the carried
variant are thought to play a major role.67

Neuroimaging
In most of the adult patients (>90%), brain MRI

shows iron deposition in the basal ganglia.70,76 Interest-
ingly, iron deposition seems more prominent in the SN
as compared to the GP, which may help in differentiat-
ing it from other NBIAs.77 Another radiological find-
ing, which is considered pathognomonic for BPAN is a
hyperintense halo surrounding the SN with a central
hypointense band on T1-weighted images.76,77

Less data is available on the imaging features of
pediatric patients, in the earlier stages of the disease.
Delayed myelination has been reported, but the most
characteristic feature is a transient swelling and T2-
hyperintensity of GP, SN, and dentate nuclei, usually
after febrile seizures.78,79 Kimura et al80 also
described a persistent hyperintensity in T2-weighted
images of the deep cerebellar nuclei in three of their
patients. Iron deposition is not common but has been
also reported in childhood, the youngest patients
being a 3-year-old child.81 In the few cases where a
DaTscan is reported, a presynaptic dopaminergic def-
icit was demonstrated.82,83
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Treatment
Parkinsonism in the early stages responds dramati-

cally to dopaminergic treatment. However, disabling
motor fluctuations and dyskinesias usually appear
shortly after therapy initiation. Dystonia and spasticity
may be treated with benzodiazepines, especially clonaz-
epam, botulinum toxin injections, or intrathecal baclo-
fen. Anticholinergics may be considered initially but
could worsen cognitive functions at later stages.

Neuropathology
Neuropathological findings confirmed the major

involvement of substantia nigra (SN) and GP, with iron
deposition and neuronal loss, axonal swelling, and
gliosis.72,84 Interestingly, a diffuse tau pathology was
also demonstrated, with neuropil threads, pre-tangles,
and neurofibrillary tangles. An Alzheimer’s-like tau pat-
tern with the classical triplet band because of mixed
3R- and 4R-tau isoforms was found at immunoblot-
ting. An increase in LC3-II levels, the end product of
LC3-I conversion during autophagy, was detected,
supporting the hypothesis of an impaired autophagic
process because of the WDR45 mutation.84 There is no
evidence for synuclein pathology, which distinguish
BPAN from other NBIAs such as PLA2G6 and mito-
chondrial membrane protein-associated neu-
rodegeneration (MPAN).

Genetic Background and Pathophysiology
In 2012, variants in the WDR45 gene were found in

BPAN patients.85,86 The vast majority of cases are
because of de novo pathogenic variants, with only two
cases reported with maternal inheritance.87,88 WDR45
encodes WD repeat domain phosphoinositide-interacting
protein-4 (WIPI-4), which is part of the WD40 repeat
protein family and plays a role in autophagy.89,90 Indeed,
patients have lower autophagic activity.85 Recently, endo-
plasmic reticulum (ER) dysfunction has been proposed as
pathophysiological mechanism for BPAN, because a
mouse model showed increased ER stress leading to neu-
ronal apoptosis.91,92

Fabry Disease: Missense Variants
with Loss-of-Function Mechanism

Epidemiology
Fabry disease (FD, OMIM 301500) is an X-linked

inborn error of glycosphingolipid catabolism resulting
from deficient or absent activity of the lysosomal
enzyme alpha-galactosidase A, because of variants in
the GLA gene.93 Its prevalence is estimated to be
1–5/10,000. Only a small proportion of these patients
are diagnosed with parkinsonism, around 1.3% to
2.2% of the total cases, with higher incidence in older

age. Fabry disease manifests in both hemizygous males
and heterozygous females, with high clinical variability,
milder phenotypes and longer survival in the latter.
Therefore, among older FD patients, female sex is more
prevalent.

Clinical Presentation
The age of onset of parkinsonian features ranges

from 46 to 72 years. The nine cases reported show a
classic akinetic-rigid parkinsonism, alone or with cogni-
tive deterioration, and associated with the classical
manifestations of the disease, such as proteinuria,
acroparesthesia, cardiovascular and cerebrovascular
disease, renal disease, and corneal opacity.94-98

Neuroimaging
Diffuse white matter hyperintensities are the most

common feature in MRI scans of FD patients.94,98,99 A
recent study also demonstrated an increase in suscepti-
bility values of the SN and striatum in susceptibility
weighted imaging (SWI) sequences, coupled to a
reduced volume of the SN only.99 A presynaptic dopa-
minergic deficit has been demonstrated in those who
underwent a functional dopaminergic imaging, either a
DaTscan or a fluorodopa positron emission tomogra-
phy (PET) scan.94,97

Treatment
Parkinsonian features show a mild to moderate response

to treatment with L-dopa. Some patients may experience
early and disabling L-dopa induced dyskinesias.94,95,97

Neuropathology
Pathology data is available for only one case of

FD with parkinsonism.96 Authors demonstrated a
severe neuronal loss in the SN pars compacta as well
as the presence of LBs, which were not found in a
FD patient without parkinsonism. Major cerebro-
vascular lesions and/or additional pathologies were
absent. These findings are also supported by the
observation of synuclein pathology in a mouse
model of FD.100

Genetic Background and Pathophysiology
GLA encodes α-galactosidase, a lysosomal hydrolase

involved in the catabolism of ceramides. Deletions and
single nucleotide variants (including missense, nonsense,
and splicing variants) in this gene are associated with a
variable reduction of α-galactosidase enzymatic activity.
Therefore, sphingolipids accumulate in cells causing
multi-systemic effects with neuronal, renal, cardiac, and
vascular involvement. Interestingly, α-galactosidase
activity was found reduced also in a cohort of PD
patients.101,102 A correlation between α-galactosidase
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residual activity and α-synuclein deposits was also
found.103 Therefore, the lysosomal dysfunction seen in
FD could predispose those patients to develop a
synuclein-positive parkinsonism in late adulthood.104

Waisman Syndrome: Single
Nucleotide Variants With Phenotypic

Variability Mainly in Males
Epidemiology

Ras analog in brain 39B (RAB39B) pathogenic vari-
ants are associated with a rare syndrome characterized
by X-linked intellectual disability (XLID) and parkin-
sonism known as Waisman syndrome (OMIM
311510). The first kindred were described in 1985 and
only 4 families and 5 sporadic cases have been
described to date.105-111 Of these, only two are
females.109 There are also two cases with only XLID
reported in literature.112,113

Clinical Presentation
Patients with Waisman syndrome usually present

with variable degrees of intellectual disability (ID) in
childhood followed by parkinsonian features later in
life. Parkinsonism onset ranges from 12 to 62 years,
being more frequent in the 5th decade of life.106-111

Parkinsonian features are clinically typical, sometimes
preceded by a longstanding postural tremor.106,108 In
few cases early gait disturbances have been reported. ID
is frequent in male patients and usually shows a fronto-
subcortical involvement pattern.108,110 Few cases have
been described with neuropsychiatric manifestations,
but only one later developed a parkinsonian condi-
tion.108,112,113 In females, the phenotype seems milder,
with later age of onset and no reported ID.109

Neuroimaging
Brain MRI often shows a strong hypointense signal

in SN and globus pallidum detectable on gradient-echo
(GRE) or SWI sequences. Computed tomography
(CT) scans revealed in the majority of the cases high
density calcifications in the same regions.107,108 How-
ever, in fewer cases the CT was normal, therefore indi-
cating iron deposits as most likely.106,108,111 Some
author also reported normal neuroimaging find-
ings.106,110 Functional imaging of the dopaminergic sys-
tem was performed in only one patient and showed
pre- and postsynaptic dopaminergic deficits as shown
by DaTscan and IBZM-SPECT.111

Treatment
Overall, a good response to L-dopa has been reported

in the majority of the cases. However, some
patients developed early treatment-related

complications, including motor fluctuations, dyskinesia,
and limb dystonia.107-111

Neuropathology
The neuropathology associated with this genetic form

of parkinsonism is characterized by the typical
features of PD. SN sections revealed loss of pigmented
neurons and LBs in surviving neurons, along with tau-
immunoreactive neurofibrillary tangles (NFTs). LBs
were also abundant in cortical regions.106,114

Genetic Background and Pathophysiology
RAB39B, a member of the RAS oncogene family,

consists of 2 exons located on the chromosome Xq28.
Rab39B is responsible for the control of intracellular
vesicular trafficking in neuronal cells and its down-
regulation results in dysregulation of α-synuclein
homeostasis.106 However, in the early stages of brain
development, its downregulation seems to alter neuro-
nal differentiation and disturb neurite growth.112 Clear
genotype–phenotype correlates were not reported, how-
ever, a residual protein expression seem to be associ-
ated with milder phenotypes.106-111,115

Methyl CpG-binding Protein
2 Spectrum Disorders: Milder
Variants Associated With
Parkinsonism in Males

Epidemiology
Methyl CpG-binding protein 2 (MeCP2) deficiency is

associated with a spectrum of clinical phenotypes. In
females it ranges from the classic Rett syndrome (RTT,
OMIM 312750), a neurodevelopmental disorder char-
acterized by a phase of normal development followed
by the progressive loss of milestones and cognitive abili-
ties, to variant RTT, which can be either milder or
more severe, to a phenotype of mild learning disabil-
ities. In males, the spectrum includes severe neonatal
encephalopathy, severe syndromic/non-syndromic intel-
lectual disability, as well as a condition associating
pyramidal signs, parkinsonism, and macroorchidism
(PPM-X syndrome).116 MeCP2 deficiency accounts for
1.3% to 1.7% of the male cases of ID, but it is a very
rare cause of X-linked parkinsonism, as only 11 male
cases have been reported to date.117-122 Age of onset of
parkinsonian features ranges from the second to the
fifth decade, with a peak in early adulthood.119

Clinical Presentation
Parkinsonism in MeCP2 deficiency is usually a

parkinsonism-plus syndrome. Among parkinsonian fea-
tures, tremor is widely represented, and it is often the
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first sign. Bradykinesia, gait disturbances, and stopped
posture usually follow. Other features such as distal
jerks, dystonic posturing, brisk reflexes, and vertical
gaze palsy have been reported.119 Concomitant PPM-X
was described in first reports.121 Some degree of neu-
rodevelopmental delay or ID has been frequently
described.119-122 Neuropsychiatric features such as
bipolar disorders, catatonia, and ASD have also been
described.119,121,122 Obligate female carriers are mildly
symptomatic, with either a mild intellectual disability
or slight non-progressive resting tremor.118,120,122

Neuroimaging
Normal neuroimaging is reported by different

authors.118,119,122 Pollini et al119 also described normal find-
ings at DaTscan.

Treatment
Parkinsonian features are reported to be non-

responsive to L-dopa,119 whereas treatment of the other
manifestations is mainly symptomatic.116,123

Genetic Background and Pathophysiology
MeCP2 is a CpGs-binding transcription factor

involved in neuronal maturation and is dynamically
regulated during neurodevelopment. Variants found in
males with parkinsonism are thought to be associated
with some residual function of MeCP2. For example,
the missense variant c.419C>T (p.Ala140Val) is located
in the middle of the α-helix and appears to shorten the
α-helix length by half, altering the wedge-shaped struc-
ture of the methyl-CpG binding domain, with only a
subtle effect on MeCP2 function.120

Phosphoglycerate Kinase-1
Deficiency: X-Linked Recessive

Metabolic Disease With Phenotypic
Variability in Males

Epidemiology
Phosphoglycerate kinase-1 (PGK1) deficiency (OMIM

300653) was first described in 1968 as a rare cause of
non-spherocytic hemolytic anemia.124 Since that report,
nearly 33 families and few sporadic cases have been
described.125 PGK1 deficiency usually presents in males
with manifestation involving erythrocytes, skeletal mus-
cles, central nervous system (CNS) or a combination of
these.126 Among CNS manifestations, developmental
delay, epilepsy and encephalopathic episodes are most
common. To date, eight male cases of parkinsonism asso-
ciated with PGK1 deficiency have been reported.127-130

Clinical Presentation
The age of onset of neurological signs is the first or

second decade of life, most commonly with intention
and then rest tremor. An overt parkinsonism develops,
with a slowly progressive global bradykinesia, along
with rigidity and postural and gait disturbances. Mild
dystonic features involving the upper limbs have been
described, while no cerebellar or pyramidal signs have
been reported.127,130 A mild developmental delay is
common. Frequently, a myopathy precedes or comes
along with the extrapyramidal features.128,129 In other
cases, epilepsy and encephalopathic episodes are seen.
Hemolytic anemia and myoglobinuria are almost
invariably seen in those patients from infancy or
childhood.130

Neuroimaging
MRI scan of the brain is reported to be normal in

most of the cases. Only Sakaue et al reported a mild
cerebellar and pontine atrophy.129 All subjects who
underwent a functional dopaminergic imaging showed
a bilateral presynaptic deficit.129,130

Treatment
The response to dopaminergic treatment is

usually good from the motor perspective. However,
patients may develop psychosis and severe ICD.128,130

Severe L-dopa-induced dyskinesias were also reported
in a patient.130

Genetic Background and Pathophysiology
PGK1 encodes phosphoglycerate-kinase-1, a key

enzyme in the glycolytic pathway, which has a ubiqui-
tous expression. The reported variants are mainly mis-
sense variants that result in significantly lower catalytic
enzyme activity. Red blood cells PGK1 residual activity
in these patients is between 2% and 6%.130 A clear cor-
relation between the residual enzymatic activity and the
clinical has not been demonstrated. However, a recent
study supported the hypothesis that the level of impair-
ment of the glycolytic pathway is a major determinant
of the phenotype.131

X-linked Parkinsonism and
Spasticity: Variants Affecting Splicing

Epidemiology
Hemizygous mutations of ATP6AP2 are associated

with X-linked syndromic mental retardation of Hedera-type
(MRXSH), X-linked spasticity-parkinsonism (XPDS, OMIM
300911) and congenital disorder of glycosylation, type IIr
(CDG2R).132-134 XDPS is a very rare condition, with only
seven males from two kindred reported to date.135,136
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Clinical Presentation
Age at onset ranges from 14 to 58 years. The two

cases with later onset showed a pure parkinsonian syn-
drome. On the other hand, those with an earlier onset
had a complex phenotype with combination of spastic-
ity (scissoring gait, brisk reflexes) and parkinsonian fea-
tures, namely bradykinesia, tremor, rigidity, shuffling
gait, and postural instability. In one case, severe devel-
opmental delay and epilepsy were also reported.135

Neuroimaging
Normal findings at neuroimaging studies have been

reported in all cases from Poorkaj et al136 and Gupta et
al135 described mild cerebellar atrophy and think cor-
pus callosum, the last one being present in only the
more severely affected patient. A fluorodopa PET scan
was performed in one patient and showed a bilateral
asymmetric reduction in tracer uptake in the
putamina.136

Treatment
Parkinsonian features show a moderate response to

dopaminergic medications.

Neuropathology
Neuropathology was performed in one mildly

affected individual.136 Overall, findings showed a 4R
tauopathy, with tau and glial fibrillary acid protein
(GFAP) immunopositive plaques mainly located in the
striatum. Diffuse A-beta deposits were observed in the
neocortex and limbic system.

Genetic Background and Pathophysiology
ATP6AP2 on Xp11.4 encodes an accessory unit of

vacuolar ATPase (V-ATPase), an essential lysosomal
enzyme expressed in different organs. The V-ATPase is
required for lysosomal degradative functions and
autophagy. Impairment in these processes is frequently
seen in PD and could therefore be implicated in the
pathogenesis of the parkinsonian condition seen in
XPDS.133 Interestingly, all known variants causative of
XPDS and MRXSH phenotypes were found to alter the
correct splicing of the gene, resulting in the variable
expression of abnormal isoforms along with some
residual wild-type protein. This observation could
explain on the one hand the marked differences in age
of onset and manifestations seen among patients, on
the other hand could suggest that a complete loss of
function could be lethal in males, as also confirmed by
several in vivo models.137

Discussion and Conclusion

X-linked parkinsonian syndromes represent a heteroge-
neous group of syndromes with age of onset ranging from
childhood to older age and huge phenotypic variability. Dif-
ferent pathophysiological pathways are involved, highlight-
ing how different routes can converge to a parkinsonian
phenotype. On the other hand, few common characteristics
can be outlined. From the clinical-epidemiological point of
view, even if female cases are reported, these conditions are
prevalent in males. Furthermore, a pure parkinsonian phe-
notype is rare, and parkinsonian features are usually associ-
ated with neuropsychiatric and cognitive manifestations or
also in combination with other movement disorders such as
ataxia, dystonia, or action tremor. With regards to the path-
ophysiology underlying these diseases, in most of them there
is evidence of abnormal nigrostriatal dopaminergic imaging.
Indeed, this finding is in line with the known major role of
basal ganglia in the pathophysiology of parkinsonism.
The genetic background is various, ranging from point

mutations in coding sequences that disrupt protein expres-
sion to triplet expansions that enhance gene transcription,
to intronic variants or expansions that impact on splicing
or gene expression. Yet, some gene products are involved
in the same cellular processes. For example, GLA and
ATP6AP2 pathogenic variants are both associated with
altered lysosomal activity whereas TAF1, MeCP2, and
FMRP have a nuclear localization and are involved in
translational and transcriptional processes. Pathophysiolog-
ical mechanisms revealed by these rare diseases could offer
insights and be used as models for those seen in PD, where
neurodegenerative pathways such as lysosomal storage and
autophagy disruption, mitochondrial dysfunction and
abnormal protein accumulation have been advocated.
Furthermore, awareness of these rare conditions and

their way of inheritance is essential for a prompt recog-
nition, which bears major implications in terms of
familial planning and of patients care. For example,
among the parkinsonisms with juvenile or early adult-
hood onset, some have a good response to dopaminer-
gic treatment, whereas others present high risks of
severe side effects. On the other side of the spectrum, it
is important to consider X-linked conditions in older
patients with parkinsonian manifestations and sugges-
tive MRI findings, comorbidity or family history, to
offer proper genetic counselling to the family. Finally,
recent advances in genetic therapy may allow patients
with a specific genetic diagnosis to become eligible for
targeted treatments in the next future.
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