## P133

## Data-driven clustering of neurodegenerative diseases based on EEG spectrum power-law decay: the DaCNES Study

<u>*Giovanni Mostile*</u><sup>1,2</sup>, R. Terranova<sup>1</sup>, G. Carlentini<sup>1</sup>, C. Terravecchia<sup>1</sup>, G. Donzuso<sup>1</sup>, G. Sciacca<sup>1</sup>, C.E. Cicero<sup>1</sup>, A. Luca<sup>1</sup>, A. Nicoletti<sup>1</sup>, M. Zappia<sup>1</sup>

<sup>1</sup>University of Catania, Department "G.F. Ingrassia", Section of Neurosciences, Catania, Italy <sup>2</sup>Oasi Research Institute - IRCCS, Troina, Italy

*Background:* Neurodegenerative diseases are common causes of impaired mobility and cognition in the elderly. Among them, tauopathies (including Alzheimer's Disease, Progressive Supranuclear Palsy and Corticobasal Degeneration) and  $\alpha$ -synucleinopathies (including Parkinson's Disease and Multiple System Atrophy) were considered. The neurodegenerative processes and relative differential diagnosis were addressed through a qEEG non-linear analytic method.

*Objectives:* To test accuracy of the power law exponent  $\beta$  applied to EEG in differentiating neurodegenerative diseases and to explore differences in neuronal connectivity among different neurodegenerative processes based on  $\beta$ .

*Methods:* N = 230 patients with a diagnosis of tauopathy or  $\alpha$ -synucleinopathy and at least one artifact-free EEG recording were selected. Welch's periodogram was applied to signal epochs randomly chosen from continuous EEG recordings. Power law exponent  $\beta$  was computed as minus the slope of the power spectrum versus frequency in a Log-Log scale. A data-driven clustering based on  $\beta$  values was performed to identify independent subgroups.

*Results:* In bilateral frontal-temporal regions,  $\beta$  index values were significantly higher for Parkinson's Disease with respect to the atypical parkinsonisms; in parietal areas, differences remained significant only for Progressive Supranuclear Palsy and Corticobasal Degeneration. Data-driven clustering based on  $\beta$  differentiated tauopathies (overall lower  $\beta$  values) from  $\alpha$ -synucleinopathies (higher  $\beta$  values) with high sensitivity and specificity. Tauopathies also presented lower values in the correlation coefficients matrix among frontal sites of recording.

*Conclusions:* Statistically significant differences in  $\beta$  index values were found between tauopathies and  $\alpha$ -synucleinopathies. Hence,  $\beta$  index is proposed as a possible biomarker of differential diagnosis and neuronal connectivity.