P51

Effects of 3D immersive virtual reality on postural control in patients with functional motor disorders

<u>Marialuisa Gandolfi</u>^{1,2,3}, A. Sandri¹, Z. Menaspà¹, L. Avanzino^{4,5}, E. Pelosin^{4,6}, C. Geroin⁷, D. Vidale⁸, M. Pirini⁸, M. Fiorio¹, M. Tinazzi¹

¹Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy

²Neuromotor and Cognitive Rehabilitation Research Centre (CRRNC), University of Verona, Verona, Italy

³Neurorehabilitation Unit, AOUI Verona, Verona, Italy

⁴Ospedale Policlinico San Martino, IRCCS, Genoa, Italy

⁵Section of Human Physiology, Department of Experimental Medicine, University of Genoa, Genoa, Italy

⁶Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy

⁷Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, Verona, Italy ⁸Khymeia SRL, Padua, Italy

Introduction: Motor symptoms in functional motor disorders (FMDs) are disabling neurological conditions exhibiting involuntary learned altered movement patterns [1-3]. Developing interventions for treating the pathophysiological features of FMDs (altered focus of attention, sense of agency, and belief/expectations) is an unmet need [1]. Virtual reality (VR) can manipulate attentional focus and improve postural control by capitalizing simultaneously on patients' motivation.

Objective: To explore whether a 3D immersive VR environment can shape postural control in FMDs by manipulating attentional focus in FMDs.

Methods: This exploratory posturographic study involved 17 patients (mean age, 45.25 ± 15.20 years) and 19 healthy controls (mean age, 41.58 ± 16.58 years). Postural parameters were measured in the real environment (single real task), a virtual 3D room-like copy of the real room (single-task VR), a custom-made 3D city-like scene where subjects maintained visual fixation while disregarding distractors (VR visual dual-task) or counted them (VR visual-cognitive dual-task). The dual-task effect (DTE) was calculated for sway area, length of the center of pressure (CoP), and anteroposterior and mediolateral CoP displacement.

Results: Sway area and mediolateral CoP displacement were improved in patients compared to controls (all, p < 0.049) on the VR visual-cognitive dual-task, measured by a decrease in DTE. A reduction in sway area DTE on the VR visual-cognitive dual-task compared to the VR visual dual-task was observed in patients (p=0.025). No other significant effects were noted.

Conclusions: This study provides novel preliminary evidence for the effects of a 3D immersive VR environment combined with visual-cognitive dual-tasking in shaping postural control. Our findings may inform interventions for the rehabilitation of FMDs.

References:

^[1] Perez, D. L. et al. 2021. J Neurol Neurosurg Psychiatry 1–10.

^[2] Tinazzi, M. et al. 2021. Parkinsonism Relat Disord 91, 32-36.

^[3] Gandolfi, M. et al. 2021. Gait Posture 88, 286–291.