P16

Subthalamic Nucleus - Deep Brain Stimulation deteriorates speech in Parkinson's disease: a machine learning study

Francesco Asci^{1,2}, G. Costantini³, F. Bove⁴, C. Piano⁴, F. Pistoia^{5,6}, R. Cerroni⁷, L. Brusa⁸, V. Cesarini³, S. Pietracupa^{1,2}, N. Modugno², A. Zampogna¹, P. Sucapane⁶, M. Pierantozzi⁷, T. Tufo^{9,10}, A. Pisani^{11,12}, A. Peppe¹³, A. Stefani⁷, P. Calabresi⁴, A. Rita Bentivoglio⁴, G. Saggio³, A. Suppa^{1,2} e Lazio DBS Study Group

¹Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy ²IRCCS Neuromed Institute, Pozzilli, Italy

³Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy

⁴Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy

⁵Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy

⁶Neurology Unit, San Salvatore Hospital, L'Aquila, Italy

⁷Department of System Medicine, University of Rome Tor Vergata, Rome, Italy

⁸Neurology Unit, S. Eugenio Hospital, Rome, Italy

⁹Neurosurgery, Policlinico A. Gemelli University Hospital Foundation IRCSS, Rome, Italy

¹⁰Neurosurgery Department, Fakeeh University Hospital, Dubai, UAE

¹¹Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy

¹²IRCCS Mondino Foundation, Pavia, Italy

¹³IRCSS Fondazione Santa Lucia, Rome, Italy

Introduction: Deep brain stimulation of the subthalamic nucleus (STN-DBS) can worsen speech in Parkinson's disease (PD).

Objective: We here examined voice impairment objectively in STN-DBS patients, by using artificial intelligence.

Methods: We enrolled 108 controls and 101 patients (50 with STN-DBS and 51 under the best medical treatment). Voice was clinically evaluated using the Unified Parkinson's Disease Rating Scale part-III subitem for voice (UPDRS-III-v). We recorded and then analysed voices using specific machine-learning algorithms. The likelihood ratio (LR) was also calculated as an objective measure for clinical-instrumental correlations.

Results: Clinically, voice impairment was greater in STN-DBS patients than in those under oral treatment. Machine-learning discriminated voices recorded from STN-DBS patients and those under oral treatments, objectively and with high accuracy. We also found significant clinical-instrumental correlations since the greater LRs, the higher UPDRS-III-v scores.

Conclusions: STN-DBS deteriorates speech in patients with PD as objectively demonstrated by machine-learning voice analysis.